IR@PKUHSC  > 北京大学第三临床医学院  > 生殖医学中心
学科主题临床医学
microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries
Zhang, Huan1; Jiang, Xiaohua1; Zhang, Yuanwei1; Xu, Bo1; Hua, Juan1; Ma, Tieliang1; Zheng, Wei1; Sun, Rui1; Shen, Wei2; Cooke, Howard J.1,3; Hao, Qiaomei1; Qiao, Jie4; Shi, Qinghua1
刊名REPRODUCTION
2014-07-01
DOI10.1530/REP-13-0508
148期:1页:43-54
收录类别SCI
文章类型Article
WOS标题词Science & Technology
类目[WOS]Developmental Biology ; Reproductive Biology
研究领域[WOS]Developmental Biology ; Reproductive Biology
关键词[WOS]CELL NUCLEAR ANTIGEN ; FORM PRIMORDIAL FOLLICLES ; GERM-CELL ; MESSENGER-RNA ; IN-VITRO ; TRANSLATIONAL REPRESSION ; DNA-REPLICATION ; GRANULOSA-CELLS ; APOPTOSIS ; EXPRESSION
英文摘要

In mammals, the primordial follicle pool, providing all oocytes available to a female throughout her reproductive life, is established perinatally. Dysregulation of primordial follicle assembly results in female reproductive diseases, such as premature ovarian insufficiency and infertility. Female mice lacking Dicer1 (Dicer), a gene required for biogenesis of microRNAs, show abnormal morphology of follicles and infertility. However, the contribution of individual microRNAs to primordial follicle assembly remains largely unknown. Here, we report that microRNA 376a (miR-376a) regulates primordial follicle assembly by modulating the expression of proliferating cell nuclear antigen (Pcna), a gene we previously reported to regulate primordial follicle assembly by regulating oocyte apoptosis in mouse ovaries. miR-376a was shown to be negatively correlated with Pcna mRNA expression in fetal and neonatal mouse ovaries and to directly bind to Pcna mRNA 3′ untranslated region. Cultured 18.5 days postcoitum mouse ovaries transfected with miR-376a exhibited decreased Pcna expression both in protein and mRNA levels. Moreover, miR-376a overexpression significantly increased primordial follicles and reduced apoptosis of oocytes, which was very similar to those in ovaries co-transfected with miR-376a and siRNAs targeting Pcna. Taken together, our results demonstrate that miR-376a regulates primordial follicle assembly by modulating the expression of Pcna. To our knowledge, this is the first microRNA-target mRNA pair that has been reported to regulate mammalian primordial follicle assembly and further our understanding of the regulation of primordial follicle assembly.

语种英语
WOS记录号WOS:000338536800007
项目编号2013CB947900 ; 2012CB944402 ; 2011CB944501 ; 2013CB945502 ; KSCX2-EW-R-07
资助机构National Basic Research Program of China (973) ; Knowledge Innovation Program of the Chinese Academy of Sciences
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.bjmu.edu.cn/handle/400002259/56933
专题北京大学第三临床医学院_生殖医学中心
作者单位1.Univ Sci & Technol China, Sch Life Sci, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Anhui, Peoples R China
2.Qingdao Agr Univ, Lab Germ Cell Biol, Key Lab Anim Reprod & Germplasm Enhancement Univ, Qingdao, Shandong, Peoples R China
3.Univ Edinburgh, Human Genet Unit, MRC, Inst Genet & Mol Med, Edinburgh EH8 9YL, Midlothian, Scotland
4.Peking Univ, Hosp 3, Dept Obstet & Gynecol, Reprod Med Ctr, Beijing 100871, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Huan,Jiang, Xiaohua,Zhang, Yuanwei,et al. microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries[J]. REPRODUCTION,2014,148(1):43-54.
APA Zhang, Huan.,Jiang, Xiaohua.,Zhang, Yuanwei.,Xu, Bo.,Hua, Juan.,...&Shi, Qinghua.(2014).microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries.REPRODUCTION,148(1),43-54.
MLA Zhang, Huan,et al."microRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries".REPRODUCTION 148.1(2014):43-54.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Huan]的文章
[Jiang, Xiaohua]的文章
[Zhang, Yuanwei]的文章
百度学术
百度学术中相似的文章
[Zhang, Huan]的文章
[Jiang, Xiaohua]的文章
[Zhang, Yuanwei]的文章
必应学术
必应学术中相似的文章
[Zhang, Huan]的文章
[Jiang, Xiaohua]的文章
[Zhang, Yuanwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。