IR@PKUHSC  > 北京大学第三临床医学院  > 呼吸科
学科主题临床医学
Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
Erb-Downward, John R.1; Akha, Amir A. Sadighi1; Wang, Juan4; Shen, Ning4; He, Bei4; Martinez, Fernando J.1; Gyetko, Margaret R.1,5; Curtis, Jeffrey L.1,2,5; Huffnagle, Gary B.1,2,3
刊名SCIENTIFIC REPORTS
2012-10-26
DOI10.1038/srep00774
2
收录类别SCI
文章类型Article
WOS标题词Science & Technology
类目[WOS]Multidisciplinary Sciences
资助者Joint Initiative for Translational and Clinical Research at the University of Michigan and Peking University Health Sciences ; USPHS ; Biomedical Laboratory Research &amp ; Development Service, Department of Veterans Affairs ; Joint Initiative for Translational and Clinical Research at the University of Michigan and Peking University Health Sciences ; USPHS ; Biomedical Laboratory Research &amp ; Development Service, Department of Veterans Affairs
研究领域[WOS]Science & Technology - Other Topics
关键词[WOS]RIBOSOMAL-RNA SEQUENCES ; GUT MICROBIOME ; MULTIVARIATE ANALYSES ; BACTERIAL MICROBIOTA ; ANTIBIOTIC-THERAPY ; FUNGAL MICROBIOTA ; CANDIDA-ALBICANS ; RECOLONIZATION ; IDENTIFICATION ; PATTERNS
英文摘要

This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.

语种英语
所属项目编号R01 HL082480 ; U19 AI090871 ; U01 HL098961
资助者Joint Initiative for Translational and Clinical Research at the University of Michigan and Peking University Health Sciences ; USPHS ; Biomedical Laboratory Research &amp ; Development Service, Department of Veterans Affairs ; Joint Initiative for Translational and Clinical Research at the University of Michigan and Peking University Health Sciences ; USPHS ; Biomedical Laboratory Research &amp ; Development Service, Department of Veterans Affairs
WOS记录号WOS:000310450800002
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.bjmu.edu.cn/handle/400002259/58708
专题北京大学第三临床医学院_呼吸科
作者单位1.Univ Michigan Hlth Syst, Div Pulm & Crit Care Med, Dept Internal Med, Ann Arbor, MI 48109 USA
2.Univ Michigan Hlth Syst, Grad Program Immunol, Ann Arbor, MI 48109 USA
3.Univ Michigan Hlth Syst, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA
4.Peking Univ, Dept Resp Med, Hosp 3, Beijing 100191, Peoples R China
5.VA Ann Arbor Healthsyst, Pulm & Crit Care Med Sect, Ann Arbor, MI 48105 USA
推荐引用方式
GB/T 7714
Erb-Downward, John R.,Akha, Amir A. Sadighi,Wang, Juan,et al. Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond[J]. SCIENTIFIC REPORTS,2012,2.
APA Erb-Downward, John R..,Akha, Amir A. Sadighi.,Wang, Juan.,Shen, Ning.,He, Bei.,...&Huffnagle, Gary B..(2012).Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond.SCIENTIFIC REPORTS,2.
MLA Erb-Downward, John R.,et al."Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond".SCIENTIFIC REPORTS 2(2012).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Erb-Downward, John R.]的文章
[Akha, Amir A. Sadighi]的文章
[Wang, Juan]的文章
百度学术
百度学术中相似的文章
[Erb-Downward, John R.]的文章
[Akha, Amir A. Sadighi]的文章
[Wang, Juan]的文章
必应学术
必应学术中相似的文章
[Erb-Downward, John R.]的文章
[Akha, Amir A. Sadighi]的文章
[Wang, Juan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。