IR@PKUHSC  > 北京大学第二临床医学院  > 乳腺外科
学科主题临床医学
Mass retrieval in mammogram based on hashing theory and linear neighborhood propagation
Li Yan-Feng1; Chen Hou-Jin1; Cao Lin1; Han Zhen-Zhong1; Cheng Lin2
关键词mammogram mass retrieval relevance feedback Hashing theory
刊名ACTA PHYSICA SINICA
2014-10-20
DOI10.7498/aps.63.208701
63期:20
收录类别SCI
文章类型Article
WOS标题词Science & Technology
类目[WOS]Physics, Multidisciplinary
研究领域[WOS]Physics
英文摘要

Mass detection in mammograms usually has high false positive (FP) rate. Content based mass retrieval can effectively reduce the FP rate by comparing the image which is to be determined with mass images which have already been diagnosed. In this paper, a method combining discriminating anchor graph hashing (DAGH) and linear neighborhood propagation (LNP) is proposed for mammogram mass retrieval. Original AGH image representation does not consider pathological relevance in defining image similarity. To solve this problem, DAGH is put forward as a new image representation, which introduces the pathological class into image similarity. Furthermore, LNP is employed as a relevance feedback technique. Finally, interactive retrieval for mammogram masses is implemented based on the learning strategy between the underlying features and high-level semantic for images. Mammograms provided by the Breast Center of Peking University People′s Hospital (BCPKUPH) are used to test the proposed method. Experimental results show that the DAGH image representation introducing pathological class is superior to original AGH in analyzing the similarity of mass images. Compared with existing methods, the proposed method shows obvious improvement in mass retrieval performance.

语种中文
WOS记录号WOS:000344616500050
项目编号61271305 ; 61201363 ; 20110009110001
资助机构National Natural Science Foundation of China ; Specialized Research Fund for the Doctoral Program of Higher Education of China
引用统计
文献类型期刊论文
版本出版稿
条目标识符http://ir.bjmu.edu.cn/handle/400002259/61661
专题北京大学第二临床医学院_乳腺外科
作者单位1.Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
2.Peking Univ, Peoples Hosp, Breast Ctr, Beijing 100044, Peoples R China
推荐引用方式
GB/T 7714
Li Yan-Feng,Chen Hou-Jin,Cao Lin,et al. Mass retrieval in mammogram based on hashing theory and linear neighborhood propagation[J]. ACTA PHYSICA SINICA,2014,63(20).
APA Li Yan-Feng,Chen Hou-Jin,Cao Lin,Han Zhen-Zhong,&Cheng Lin.(2014).Mass retrieval in mammogram based on hashing theory and linear neighborhood propagation.ACTA PHYSICA SINICA,63(20).
MLA Li Yan-Feng,et al."Mass retrieval in mammogram based on hashing theory and linear neighborhood propagation".ACTA PHYSICA SINICA 63.20(2014).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Mass.pdf(773KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li Yan-Feng]的文章
[Chen Hou-Jin]的文章
[Cao Lin]的文章
百度学术
百度学术中相似的文章
[Li Yan-Feng]的文章
[Chen Hou-Jin]的文章
[Cao Lin]的文章
必应学术
必应学术中相似的文章
[Li Yan-Feng]的文章
[Chen Hou-Jin]的文章
[Cao Lin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Mass.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。