IR@PKUHSC  > 北京大学第一临床医学院  > 放射治疗科
学科主题临床医学
Classification of breast lesions based on a dual S-shaped logistic model in dynamic contrast enhanced magnetic resonance imaging
Dang Yi1; Guo Li2; Lv DongJiao2,3; Wang XiaoYing1; Zhang Jue1,3
关键词logistic model breast cancer dynamic contrast enhanced magnetic resonance imaging
刊名SCIENCE CHINA-LIFE SCIENCES
2011-10-01
DOI10.1007/s11427-011-4221-7
54期:10页:889-896
收录类别SCI
文章类型Article
WOS标题词Science & Technology
类目[WOS]Biology
研究领域[WOS]Life Sciences & Biomedicine - Other Topics
关键词[WOS]INTERSTITIAL FLUID PRESSURE ; WATER EXCHANGE ; MRI ; CANCER ; TUMORS ; BENIGN ; DIFFERENTIATION ; MAMMOGRAPHY ; BRAIN ; MICROCALCIFICATIONS
英文摘要

This study proposes a novel dual S-shaped logistic model for automatically quantifying the characteristic kinetic curves of breast lesions and for distinguishing malignant from benign breast tumors on dynamic contrast enhanced (DCE) magnetic resonance (MR) images. D(alpha, beta) is the diagnostic parameter derived from the logistic model. Significant differences were found in D(alpha, beta) between the malignant benign groups. Fisher′s Linear Discriminant analysis correctly classified more than 90% of the benign and malignant kinetic breast data using the derived diagnostic parameter (D(alpha, beta)). Receiver operating characteristic curve analysis of the derived diagnostic parameter (D(alpha, beta)) indicated high sensitivity and specificity to differentiate malignancy from benignancy. The dual S-shaped logistic model was effectively used to fit the kinetic curves of breast lesions in DCE-MR. Separation between benign and malignant breast lesions was achieved with sufficient accuracy by using the derived diagnostic parameter D(alpha, beta) as the lesion′s feature. The proposed method therefore has the potential for computer-aided diagnosis in breast tumors.

语种英语
WOS记录号WOS:000298196100001
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.bjmu.edu.cn/handle/400002259/64789
专题北京大学第一临床医学院_放射治疗科
北京大学第一临床医学院_医学影像科
作者单位1.Peking Univ, Coll Engn, Beijing 100871, Peoples R China
2.Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
3.Peking Univ, Dept Radiol, Hosp 1, Beijing 100034, Peoples R China
推荐引用方式
GB/T 7714
Dang Yi,Guo Li,Lv DongJiao,et al. Classification of breast lesions based on a dual S-shaped logistic model in dynamic contrast enhanced magnetic resonance imaging[J]. SCIENCE CHINA-LIFE SCIENCES,2011,54(10):889-896.
APA Dang Yi,Guo Li,Lv DongJiao,Wang XiaoYing,&Zhang Jue.(2011).Classification of breast lesions based on a dual S-shaped logistic model in dynamic contrast enhanced magnetic resonance imaging.SCIENCE CHINA-LIFE SCIENCES,54(10),889-896.
MLA Dang Yi,et al."Classification of breast lesions based on a dual S-shaped logistic model in dynamic contrast enhanced magnetic resonance imaging".SCIENCE CHINA-LIFE SCIENCES 54.10(2011):889-896.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dang Yi]的文章
[Guo Li]的文章
[Lv DongJiao]的文章
百度学术
百度学术中相似的文章
[Dang Yi]的文章
[Guo Li]的文章
[Lv DongJiao]的文章
必应学术
必应学术中相似的文章
[Dang Yi]的文章
[Guo Li]的文章
[Lv DongJiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。