北京大学医学部机构知识库
Advanced  
IR@PKUHSC  > 基础医学院  > 医学信息学系  > 期刊论文
学科主题: 医学信息学
题名:
A Computational Framework to Infer Human Disease-Associated Long Noncoding RNAs
作者: Liu, Ming-Xi1,2; Chen, Xing1,3; Chen, Geng4; Cui, Qing-Hua4; Yan, Gui-Ying1,3
刊名: PLOS ONE
发表日期: 2014-01-02
DOI: 10.1371/journal.pone.0084408
卷: 9, 期:1
收录类别: SCI
文章类型: Article
WOS标题词: Science & Technology
类目[WOS]: Multidisciplinary Sciences
研究领域[WOS]: Science & Technology - Other Topics
关键词[WOS]: GENE-EXPRESSION ; BREAST-CANCER ; DATABASE ; GENOME ; PROTEIN ; INHIBITOR ; MOUSE ; OVEREXPRESSION ; SUSCEPTIBILITY ; IDENTIFICATION
英文摘要:

As a major class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been implicated in various critical biological processes. Accumulating researches have linked dysregulations and mutations of lncRNAs to a variety of human disorders and diseases. However, to date, only a few human lncRNAs have been associated with diseases. Therefore, it is very important to develop a computational method to globally predict potential associated diseases for human lncRNAs. In this paper, we developed a computational framework to accomplish this by combining human lncRNA expression profiles, gene expression profiles, and human disease-associated gene data. Applying this framework to available human long intergenic noncoding RNAs (lincRNAs) expression data, we showed that the framework has reliable accuracy. As a result, for non-tissue-specific lincRNAs, the AUC of our algorithm is 0.7645, and the prediction accuracy is about 89%. This study will be helpful for identifying novel lncRNAs for human diseases, which will help in understanding the roles of lncRNAs in human diseases and facilitate treatment. The corresponding codes for our method and the predicted results are all available at http://asdcd.amss.ac.cn/MingXiLiu/lncRNA-disease.html.

语种: 英语
所属项目编号: 10531070 ; 10721101 ; 11301517 ; 11371355 ; KJCX-YW-S7
项目资助者: National Natural Science Foundation of China ; National Center for Mathematics and Interdisciplinary Sciences, CAS
WOS记录号: WOS:000329460100056
Citation statistics:
内容类型: 期刊论文
版本: 出版稿
URI标识: http://ir.bjmu.edu.cn/handle/400002259/64808
Appears in Collections:基础医学院_医学信息学系_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
A Computational Framework to Infer Human Disease-Associated Long Noncoding RNAs.pdf(981KB)期刊论文出版稿限制开放View Download

作者单位: 1.Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Ctr Math & Interdisciplinary Sci, Beijing, Peoples R China
4.Peking Univ, Sch Basic Med Sci, Dept Biomed Informat, Beijing 100871, Peoples R China

Recommended Citation:
Liu, Ming-Xi,Chen, Xing,Chen, Geng,et al. A Computational Framework to Infer Human Disease-Associated Long Noncoding RNAs[J]. PLOS ONE,2014,9(1).
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Liu, Ming-Xi]'s Articles
[Chen, Xing]'s Articles
[Chen, Geng]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Liu, Ming-Xi]‘s Articles
[Chen, Xing]‘s Articles
[Chen, Geng]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: A Computational Framework to Infer Human Disease-Associated Long Noncoding RNAs.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  北京大学医学部 - Feedback
Powered by CSpace