IR@PKUHSC  > 北京大学临床肿瘤学院
学科主题临床医学
Diagnosis of gastric cancer using decision tree classification of mass spectral data
Su, Yahui; Shen, Jing; Qian, Honggang; Ma, Huachong; Ji, Jiafu; Ma, Hong; Ma, Longhua; Zhang, Weihua; Meng, Ling; Li, Zhenfu; Wu, Jian; Jin, Genglin; Zhang, Jianzhi; Shou, Chengchao
刊名CANCER SCIENCE
2007
DOI10.1111/j.1349-7006.2006.00339.x
98期:1页:37-43
收录类别SCI
文章类型Article
WOS标题词Science & Technology
类目[WOS]Oncology
研究领域[WOS]Oncology
关键词[WOS]LASER DESORPTION/IONIZATION-TIME ; SERUM PROTEOMIC PATTERNS ; PROSTATE-CANCER ; OVARIAN-CANCER ; CARCINOEMBRYONIC ANTIGEN ; GASTROINTESTINAL-CANCER ; FOLLOW-UP ; IDENTIFICATION ; SPECTROMETRY ; COAGULATION
英文摘要

Although gastric cancer is the second leading cause of cancer death worldwide, specific and sensitive biomarkers that can be used for its diagnosis are still unavailable. Attempting to improve on current approaches to the serological diagnosis of gastric cancer, we subjected serum samples from 245 individuals (including 127 gastric cancer patients, 100 age- and sex-matched healthy individuals, nine benign gastric lesion patients and nine colorectal cancer patients) for analysis by surface-enhanced laser desorption/ionization (SELDI) mass spectrometry. Peaks were detected with Ciphergen SELDI software version 3.1.1 and analyzed with Biomarker Patterns′ software 5.0. We developed a classifier for separating the gastric cancer groups from the healthy groups. Three protein masses with 1468, 3935 and 7560 m/z were selected as a potential ′fingerprint′ for the detection of gastric cancer. It was able to distinguish the gastric cancer patients from the health volunteers with a sensitivity of 95.6% and a specificity of 92.0% in the training set. In the blinding set, it was capable of differentiating the gastric cancer samples from the others with a specificity of 88.0%, a sensitivity of 85.3%, and an accuracy of 86.4%. These values were all higher than those achieved in a parallel analysis by measuring serum carcinoembryonic antigen (CEA) and carbohydrate antigen (CA)19-9 together. Therefore, the decision tree analysis of serum proteomic patterns has the potential to be used in gastric cancer diagnosis.

语种英语
WOS记录号WOS:000242221500008
引用统计
被引频次:43[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.bjmu.edu.cn/handle/400002259/64815
专题北京大学临床肿瘤学院
作者单位1.Peking Univ, Sch Oncol, Beijing 100036, Peoples R China
2.Beijing Canc Hosp & Inst, Beijing 100036, Peoples R China
3.Beijing Chaoyang Hosp, Beijing 100020, Peoples R China
4.Ciphergen Biosyst, Fremont, CA 94555 USA
推荐引用方式
GB/T 7714
Su, Yahui,Shen, Jing,Qian, Honggang,et al. Diagnosis of gastric cancer using decision tree classification of mass spectral data[J]. CANCER SCIENCE,2007,98(1):37-43.
APA Su, Yahui.,Shen, Jing.,Qian, Honggang.,Ma, Huachong.,Ji, Jiafu.,...&Shou, Chengchao.(2007).Diagnosis of gastric cancer using decision tree classification of mass spectral data.CANCER SCIENCE,98(1),37-43.
MLA Su, Yahui,et al."Diagnosis of gastric cancer using decision tree classification of mass spectral data".CANCER SCIENCE 98.1(2007):37-43.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Su, Yahui]的文章
[Shen, Jing]的文章
[Qian, Honggang]的文章
百度学术
百度学术中相似的文章
[Su, Yahui]的文章
[Shen, Jing]的文章
[Qian, Honggang]的文章
必应学术
必应学术中相似的文章
[Su, Yahui]的文章
[Shen, Jing]的文章
[Qian, Honggang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。